HIV and ageing: improving quantity and quality of life

Keri N. Althoff\textsuperscript{a,\textdagger}, Mikaela Smit\textsuperscript{b,\textdagger}, Peter Reiss\textsuperscript{c}, and Amy C. Justice\textsuperscript{d}

**Purpose of review**
Evidence-based strategies are needed to address the growing complexity of care of those ageing with HIV so that life expectancy is extended, quality of life is also enhanced.

**Recent findings**
Modifiable contributing factors to the quantity and quality of life in adults ageing with HIV include: burden of harmful health behaviours, injury from HIV infection, HIV treatment toxicity and general burden of age-associated comorbidities. In turn, these factors contribute to geriatric syndromes including multimorbidity and polypharmacy, physiologic frailty, falls and fragility fractures and cognitive dysfunction, which further compromise quality of life long before they lead to mortality.

**Summary**
Viral suppression of HIV with combination antiviral therapy has led to increasing longevity but has not enabled a complete return to health among ageing HIV-infected individuals (HIV\textsuperscript{+}). As adults age with HIV, the role of HIV itself and associated inflammation, effects of exposure to antiretroviral agents, the high prevalence of modifiable risk factors for age-associated conditions (e.g. smoking), and the effects of other viral coinfections are all influencing the health trajectory of persons ageing with HIV. We must move from the simplistic notion of HIV becoming a ‘chronic controllable illness’ to understanding the continually evolving ‘treated’ history of HIV infection with the burden of age-associated conditions and geriatric syndromes in the context of an altered and ageing immune system.

**Keywords**
ageing, HIV, multimorbidity, patient centred care, polypharmacy

**INTRODUCTION**
Wherever effective antiretroviral therapy (ART) is available, people are ageing with HIV. The median age of HIV-infected adults has passed 50 years in the USA and Canada, Australia and most of Europe are close behind. Similar trends are emerging in Latin America, the Caribbean, Sub-Saharan Africa, Asia, the Middle East and North Africa [1]. Nevertheless, HIV-infected adults at least 50 years of age with suppressed HIV-1 RNA and free of AIDS-defining illnesses or comorbidities experience a shorter life expectancy than uninfected individuals [2\textsuperscript{\textdagger},3]. Modifiable contributing factors to the quantity and quality of life in adults ageing with HIV likely include: burden of harmful health behaviours, injury from HIV infection, HIV treatment toxicity and general burden of age-associated comorbidities. In turn, these factors contribute to geriatric syndromes including multimorbidity and polypharmacy, physiologic frailty, falls and fragility fractures and cognitive dysfunction, which further compromise quality of life long before they lead to mortality. Evidence-based strategies are needed to address the growing complexity of care of those ageing with HIV so that life expectancy can be extended and quality of life can be preserved.

\textsuperscript{\textdagger}Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, \textsuperscript{\textdagger}Department of Infectious Disease Epidemiology, Imperial College London, London, UK, \textsuperscript{\textdagger}Academic Medical Center, Department of Global Health, University of Amsterdam, Amsterdam Institute for Global Health and Development, and HIV Monitoring Foundation, Amsterdam, Netherlands and \textsuperscript{\textdagger}Yale University Schools of Medicine and Public Health and the Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut, USA

Correspondence to Dr Amy C. Justice, MD, PhD, VA Connecticut Healthcare System, Building 35A, Room 2-212 (11-ACSLG), 950 Campbell Avenue, West Haven, CT 06510, USA.

E-mail: amy.justice2@va.gov

Authors contributed equally.

**Curr Opin HIV AIDS** 2016, 11:527–536

DOI:10.1097/COH.0000000000000305
Survival in the modern ART era

KEY POINTS
- Ageing with HIV is characterized by multimorbidity and polypharmacy, which is strongly influenced by chronic infection with HIV.
- Many factors influence quality and quantity of life in this group: HIV-1 RNA suppression is the first therapeutic goal, but many other management issues follow.
- Attention to mental health, geriatric syndromes, maintaining physical activity and avoiding excess weight gain after ART are advised.

FACTORS INFLUENCING AGEING WITH HIV

Although adults ageing with HIV are subject to the same risk factors for age-related diseases and conditions as uninfected adults, they differ in prevalence of harmful health behaviours. They also experience ongoing HIV-associated inflammation and immune activation [4] and adverse effects of chronic exposure to ART likely leading to excess organ system injury [5]. The extent to which this excess is expressed in cellular ageing, including cellular senescence, mitochondrial dysfunction, telomere attrition and epigenetic alteration remains an area of active research [6,7].

Weight gain after antiretroviral therapy initiation

Although HIV-infected adults tend to be less obese than uninfected adults [8], the prevalence of obesity has increased over time, and is associated with the ageing HIV-infected population, earlier ART start and increasingly widespread ART coverage [9,10]. Weight gain following ART has been well documented [10,11], with increase in BMI amongst HIV-positive patients in the first year on ART surpassing that of demographically matched uninfected comparators [10,11]. This weight gain is likely due in part to decreased metabolic demand from ART-induced viral suppression coupled with ART-induced fat accumulation and potential changes to appetite [12]. However, weight gain after ART should be avoided among those who are overweight or obese as it is not independently associated with improved survival [11]. Further, ART-associated weight gain is associated with incident cardiovascular disease (CVD), diabetes and higher waist circumference and lower hip circumference may mediate the association between HIV and frailty in HIV-infected adults [13*,14*].

Increased visceral adipose tissue (VAT) is particularly problematic. Even with current ART medications, VAT increases by 25–35% in the 2 years following ART initiation [15]. Elevated VAT and peripheral lipatrophy are associated with CVD risk and risk between VAT and CVD is higher in HIV-infected compared with uninfected adults irrespective of VAT-level [16]. Further, renin–angiotensin–aldosterone system activation associated with VAT accumulation contributes to insulin resistance in HIV infection [17], which likely contributes to the excess risk of diabetes associated with weight gain after ART initiation [18].

Further, although information on short-term risk of side-effects is required for antiretroviral drug licensing, longer-term effects must be evaluated once a drug is in clinical use. Certain antiretroviral drugs may contribute to the risk of comorbidities via related toxicity and metabolic pathway activation. For example, abacavir and some protease inhibitors have been associated with cardiovascular risk [19], and protease inhibitors have also been associated with insulin resistance and diabetes [20,21].

Harmful health behaviours

Smoking, alcohol and substance abuse all represent modifiable risk factors for comorbidities. HIV-infected adults on ART in Europe and the United States may lose more life years through smoking than through HIV [22**]. Alcohol is associated with an excess risk of physiologic frailty and mortality among HIV-infected compared with uninfected adults, even at low levels [23**]. Further, HIV-infected adults are not exempt from the epidemic of opioid abuse, which is being fuelled by a growing abundance of opioid prescriptions and is a particular problem in the United States [24]. Opioid-associated mortality is higher in older compared with younger adults, irrespective of HIV status [25]. The study by Kathy Petoumenos et al. (pp. 514–520) in this issue outlines the association between HIV, substance abuse and survival in more detail.

COMORBIDITIES: AGE-ASSOCIATED AND HIV-ASSOCIATED NON-AIDS CONDITIONS

Among those ageing with HIV, increased life expectancy has been accompanied by dramatic decreases in AIDS-related morbidity and mortality and an excess burden of comorbidities compared with uninfected demographically similar adults [26*,27*,28*,29]. The TEMPRANO and START trials have demonstrated that immediate ART initiation can reduce the incidence of comorbidities compared with deferred treatment initiation, pointing to the
role of long-term immune activation and inflammation [30,31]. Of note, while those with HIV are at greater risk of comorbidities across age strata and while certain cellular markers may suggest more rapid ‘ageing,’ comorbid events do not appear to occur dramatically earlier [27*,32]. In fact, and perhaps even more worrisome, differences in risk may grow with age [27*].

**Cardiovascular disease**

The risk of myocardial infarction (MI), for example, is 1.5–2-fold higher among HIV-infected adults without any major CVD risk factor than uninfected adults, and even higher amongst those with HIV and CVD risk factors [26*,33]; it is possible that the relative risk of MI is changing over time in HIV-infected adults [34]. Detectable HIV-1 RNA has been associated with CVD in HIV-infected adults [35]. Risk prediction models for CVD specific to HIV-infected adults, such as the D:A:D CVD risk model, take into account HIV-related risk factors (e.g. CD4 count and ART regimens) and have demonstrated superior risk prediction of MI compared with the Framingham and ATP3 risk scores, both developed in the general population [36,37]. The 2013 American College of Cardiology/American Heart Association atherosclerotic CVD (ASCVD) risk prediction model which was developed in the general population and is used to determine likelihood of benefit from statin treatment, however, has recently been shown to be a better model for discriminating those with high and low risk compared with the D:A:D model [37]. The ASCVD model, however, suffers from issues with calibration when applied to HIV-infected adults, resulting in underestimates of high CVD risk and underutilization of statins [38]. A new clinical trial, REPRIEVE (Randomized Trial to Prevent Vascular Events in HIV), will test the impact of pitavastatin on primary prevention of CVD among people with HIV at low to moderate a-priori CVD risk [39].

**Liver disease**

Risk of liver disease is elevated among HIV-infected adults without viral hepatitis. The risk of hepatocellular cancer, a major form of cancer among those with HIV, only occurs among those with pre-existing liver fibrosis and most typically, advanced fibrosis or cirrhosis. ART medications can exacerbate liver injury through multiple mechanisms including metabolic host-mediated injury (tipranavir), hypersensitivity (abacavir and nevirapine) and mitochondrial toxicity (didanosine, stavudine and zidovudine) [45].

Additionally, the odds of having hepatitis C virus (HCV) infection are six times higher in people living with HIV than in those without HIV [46]. Coinfection with HCV has a synergistic effect on liver injury leading to more rapid progression of cirrhosis, which is slowed, but not neutralized, after ART initiation [47*]. Highly effective direct-acting antivirals for HCV [48] may slow progression of fibrosis but the impact of direct-acting antivirals on the long-term risk of hepatocellular carcinoma remains to be established. The study by Klein et al. (pp. 521–526) in this issue outlines the association between HIV and HCV in more detail. Coinfection with hepatitis B is also relatively common, especially in Asia. Its effects in association with HIV are less well understood, but may be contributing to the risk of hepatocellular cancer.

**Renal insufficiency**

Renal insufficiency, a major risk factor for drug toxicity and CVD, is a contra-indication for several antiretroviral drugs, including tenofovir disoproxil fumarate. Renal insufficiency is likely multifactorial including decreasing renal function with age, greater genetic susceptibility to renal disease among those of African descent and renal toxicity related to long-term use of ART. Tenofovir alafenamide, which has demonstrated similar efficacy in suppressing HIV but an improved renal safety profile compared with tenofovir disoproxil fumarate, may help preserve renal function but will need to be evaluated in long-term studies [49]. Finally, lower CD4 cell counts are associated with a greater risk of renal disease progression and ART (excluding tenofovir...
disoprophyl fumarate) appears to ameliorate some of this risk [50,51].

Pulmonary disease
Lung diseases associated with HIV after accounting for smoking include pulmonary hypertension, bacterial pneumonia and chronic obstructive pulmonary disease (COPD) [52]. Infection with HIV, especially with lower CD4 cell count, is an independent risk factor for acute exacerbations of COPD [53], and is also associated with reduced diffusing capacity [54]. Although a relatively rare event in the general population, pulmonary arterial hypertension occurs 1000-fold more commonly among those with HIV for reasons that are not well understood. Lung disease in HIV has a major impact on symptom burden, functional status and frailty [55,56]. Vaccination may be an important part of resilient ageing in those ageing with HIV; pneumococcal vaccination of those with HIV infection offers protection against pneumonia.

Depression
An estimated 13% of HIV-infected adults experience major depression [57*]. Depression has been linked to reduced retention in care [57*] and reduced cognitive performance [59]. Traditionally, depression has been associated with stigma in HIV-infected populations [60]. In the geriatric population, additional triggers for depression may include social isolation and additional stresses, such as ill health and stress caused by the loss of a loved one. A recent study showed significant discrepancy in physician perception and self-reported depressive symptoms and called for mandatory depression screening in all HIV-infected adults [61]. Measuring depression is challenging, with many options for screening, diagnosis and rating symptoms and the need to account for cultural considerations. Bipolar disorders and schizophrenia may interact with depression. Depressive symptoms in people with HIV with bipolar disorder have been associated with poor psychoactive medication adherence [62]. Both bipolar disorder and schizophrenia have also been linked to poor adherence to ART in HIV-infected adults [63]. Some ART medications may also contribute; there remains controversy concerning efavirenz and suicide with a recent analysis suggesting a two-fold increased risk [64].

Multimorbidity and polypharmacy
Multimorbidity and polypharmacy go hand-in-hand. Multimorbidity, defined as ‘multiple, potentially interacting, medical and psychiatric conditions’, is a geriatrics-rooted concept with applicability to ageing with HIV [65]. Multimorbidity is typically measured as a count of the number of comorbid conditions, which makes multimorbidity a function of the number of conditions considered [65]. Multimorbidity is both a result of risk factors for individual HIV and age-related conditions, as well as the propensity for one condition to increase the risk of others. As the number of conditions increases, so does the proportion of individuals taking multiple medications (polypharmacy). Patients on five or more medications experience a significant number of medication-related adverse effects [66]. Among HIV-infected individuals 50 years or older with access to care, polypharmacy is becoming the norm in North America [67*,68**,69]. Approximately, a third of long-term HIV-infected adults in Canada are taking five or more medications [67*]. In contrast, in The Netherlands only 5% of all patients in care are taking three or more medications in addition to ART and these proportions increase with age [65] and will likely increase with time [68**]. Opioid and benzodiazepine medications are particularly problematic and confer an independent association with mortality after adjustment for severity of illness and for number of chronic medications [70**].

A recent modelling study forecasts that multimorbidity amongst HIV-infected adults in Europe will increase to 84% by 2030, with 54% using multiple medications, and CVD contributing the largest burden [68**]. Harms of multimorbidity and polypharmacy include: complicated drug interactions (with other drugs and with alcohol and substance use), a potential decrease in ART adherence because of confusion of medication dosing and timing and/or medication fatigue, cumulative
toxicity, mortality and expense. Successful management of multimorbidity and polypharmacy will be vital for future HIV care. A proposed framework for managing polypharmacy in people ageing with HIV includes an annual medication reconciliation, assessment of tobacco, alcohol and substance use, a risk and benefit assessment and ranking of medications and prioritization with patient input [68**]. As a result of multimorbidity and polypharmacy, ageing HIV-infected adults are likely to suffer from the geriatric syndromes discussed below.

**Functional decline**
Decline in physical performance can be reflected in slow gait speed and weak grip strength, both of which appear to be predictors of disability, morbidity and mortality in the general population. Faster rate of decline and an increased risk for slow gait speed have been observed among HIV-infected compared with uninfected men [71*]. Functional impairment, including gait speed and grip strength, has been associated with low muscle mass and loss of bone density in those ageing with HIV [72]. Increased physical activity is recommended for reducing functional impairment among those ageing with HIV [73].

**Cognitive dysfunction**
Cognitive dysfunction in HIV is multifacetted in nature and dysfunction is estimated to affect as many as half of HIV-infected adults [74].
ART, antiretroviral therapy; HCV, hepatitis C virus.

Survival in the modern ART era

Contributing factors associated with cognitive dysfunction may include HIV itself including serious immune-deficiency, on-going substance use, neurocognitively active medications, depression and multimorbidity [59,75]. Changes in brain structure have been correlated with cognitive impairment in HIV-infected adults [74], with a recent study in suppressed HIV-infected and uninfected adults showing that microstructural abnormalities were more common in HIV-infected adults [76]. Most recently, a novel high-resolution subcortical shape analysis technique was found to be more sensitive to associations between brain volume and CD4 counts as well as neurocognitive scores over traditional whole volume subcortical analyses [77]. As people age with HIV beyond 65 years of age, we will likely see substantially more cognitive dysfunction with consequence for HIV care, including lower adherence to ART [78] and reduced retention [58,59]. Alzheimer’s disease and vascular dementia will likely play an increasing role.

Frailty
Frailty, another geriatric syndrome, is commonly defined as a loss of physiologic reserve and increased vulnerability to negative health outcomes. Many recent studies have shown an increased prevalence of frailty in HIV-infected compared with uninfected adults [14,79]. Frailty has commonly been measured using the Fried criteria (≥3 of the following criteria: weakness, slowness, unintentional weight loss, exhaustion and low physical activity), which were developed and validated in a general population sample age 80 years or older [80], and there is controversy regarding how to operationalize this definition among people ageing with HIV [79].

Alternative measures of frailty include the Rockwood index and the Veterans Aging Cohort Study (VACS) Index (http:vacs.med.yale.edu). Although the former is based on accumulation of deficits, and has not been widely applied amongst ageing adults with HIV [81], the VACS Index was developed to ensure improved survival and quality of life for those ageing with HIV, we recommend integrating the following principles into HIV care:

<table>
<thead>
<tr>
<th>Table 1. Integrated care for those aging with HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>To ensure improved survival and quality of life for those ageing with HIV, we recommend integrating the following principles into HIV care:</td>
</tr>
<tr>
<td><strong>Earlier HIV diagnosis and treatment.</strong> Early initiation of treatment is thought to reduce HIV-related inflammation, as reflected by current guidelines. HIV screening, including screening in older populations, is needed to identify unknown infection and initiate ART.</td>
</tr>
<tr>
<td><strong>Earlier HCV diagnosis and treatment.</strong> Because of the impact of HCV on HIV disease trajectory, diagnosis of HCV and treatment using direct acting antivirals for HCV viral eradication is important for successful ageing with HIV.</td>
</tr>
<tr>
<td><strong>Screening for and treatment of comorbidities.</strong> It will be important to ensure regular screening of HIV-infected individuals for comorbidities with important clinical impact including metabolic syndrome, organ system disease, and cancer.</td>
</tr>
<tr>
<td><strong>Proactively manage weight gain after ART initiation.</strong> Weight gain after successful ART is inevitable if eating and exercise habits remain unchanged. Weight gain after ART initiation among those who are overweight or obese confers no survival advantage and increases risk of diabetes and metabolic disease. Normal weight patients initiating ART should be advised to gain no more than 7–10 pounds and overweight or obese patients should avoid weight gain. Nutritional counselling once HIV-1 RNA is suppressed may be helpful.</td>
</tr>
<tr>
<td><strong>Emphasize the importance of physical activity.</strong> Physical activity is not only needed to control weight, but also to build and maintain muscle mass for physical function and falls prevention, and improve cognition and mental health. In consultation with a physical therapist, consider providing the patient with an ‘exercise prescription’ using resources readily available to the patient.</td>
</tr>
<tr>
<td><strong>Eliminate substance use.</strong> Treatment for substance use and relapse should be a top priority. Tobacco and alcohol use are major risk factors for many age-related diseases. Smoking cessation, alcohol and substance use treatment programs will be increasingly important means of preserving health in HIV-infected individuals. Treatment for alcohol and opioid abuse and smoking cessation programs for younger HIV-infected adults are needed to preserve health at older ages.</td>
</tr>
<tr>
<td><strong>Actively manage polypharmacy.</strong> Regular medication reconciliation with identification of potentially inappropriate medications is essential as those with HIV age to avoid drug fatigue, serious interactions, hospitalization and early mortality. Opioid prescription management will be critical to mitigating the effect of this epidemic on ageing with HIV.</td>
</tr>
<tr>
<td><strong>Use tools to know when to intervene.</strong> Various calculators and indexes exist which can be used in HIV care. The VACS Index, for example, can facilitate monitoring the overall health of HIV infected individuals, help inform intervals of follow up, and alert provider and patient to changes in the patient’s physiologic frailty that may require closer monitoring, a change in management, or a move to an assisted living facility or hospice.</td>
</tr>
<tr>
<td><strong>Preparing care facilities for HIV-infected adults.</strong> We must ensure an HIV-knowledgeable workforce in assisted living facilities and hospices that serve the general population.</td>
</tr>
<tr>
<td><strong>End of life planning.</strong> Many ageing HIV infected individuals will require end of life support, with facilities and providers trained in the care of those with HIV-infection.</td>
</tr>
<tr>
<td><strong>Testing and adaptation of models of care.</strong> Whether HIV clinics continue to be the medical home for adults ageing with HIV, or primary care teams step in to help manage the increasing complexity of care, patient-centred care, focused on the patient’s personal goals for quality of life, should be adapted and override an exclusive focus on survival.</td>
</tr>
</tbody>
</table>

Frailty criteria: weakness, slowness, unintentional weight loss, exhaustion and low physical activity.

Frailty, another geriatric syndrome, is commonly defined as a loss of physiologic reserve and increased vulnerability to negative health outcomes. Many recent studies have shown an increased prevalence of frailty in HIV-infected compared with uninfected adults [14,79]. Frailty has commonly been measured using the Fried criteria (≥3 of the following criteria: weakness, slowness, unintentional weight loss, exhaustion and low physical activity), which were developed and validated in a general population sample age 80 years or older [80], and there is controversy regarding how to operationalize this definition among people ageing with HIV [79]. Alternative measures of frailty include the Rockwood index and the Veterans Aging Cohort Study (VACS) Index (http:vacs.med.yale.edu). Although the former is based on accumulation of deficits, and has not been widely applied amongst ageing adults with HIV [81], the VACS Index was developed to ensure improved survival and quality of life for those ageing with HIV, we recommend integrating the following principles into HIV care:

<table>
<thead>
<tr>
<th>Table 1. Integrated care for those aging with HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>To ensure improved survival and quality of life for those ageing with HIV, we recommend integrating the following principles into HIV care:</td>
</tr>
<tr>
<td><strong>Earlier HIV diagnosis and treatment.</strong> Early initiation of treatment is thought to reduce HIV-related inflammation, as reflected by current guidelines. HIV screening, including screening in older populations, is needed to identify unknown infection and initiate ART.</td>
</tr>
<tr>
<td><strong>Earlier HCV diagnosis and treatment.</strong> Because of the impact of HCV on HIV disease trajectory, diagnosis of HCV and treatment using direct acting antivirals for HCV viral eradication is important for successful ageing with HIV.</td>
</tr>
<tr>
<td><strong>Screening for and treatment of comorbidities.</strong> It will be important to ensure regular screening of HIV-infected individuals for comorbidities with important clinical impact including metabolic syndrome, organ system disease, and cancer.</td>
</tr>
<tr>
<td><strong>Proactively manage weight gain after ART initiation.</strong> Weight gain after successful ART is inevitable if eating and exercise habits remain unchanged. Weight gain after ART initiation among those who are overweight or obese confers no survival advantage and increases risk of diabetes and metabolic disease. Normal weight patients initiating ART should be advised to gain no more than 7–10 pounds and overweight or obese patients should avoid weight gain. Nutritional counselling once HIV-1 RNA is suppressed may be helpful.</td>
</tr>
<tr>
<td><strong>Emphasize the importance of physical activity.</strong> Physical activity is not only needed to control weight, but also to build and maintain muscle mass for physical function and falls prevention, and improve cognition and mental health. In consultation with a physical therapist, consider providing the patient with an ‘exercise prescription’ using resources readily available to the patient.</td>
</tr>
<tr>
<td><strong>Eliminate substance use.</strong> Treatment for substance use and relapse should be a top priority. Tobacco and alcohol use are major risk factors for many age-related diseases. Smoking cessation, alcohol and substance use treatment programs will be increasingly important means of preserving health in HIV-infected individuals. Treatment for alcohol and opioid abuse and smoking cessation programs for younger HIV-infected adults are needed to preserve health at older ages.</td>
</tr>
<tr>
<td><strong>Actively manage polypharmacy.</strong> Regular medication reconciliation with identification of potentially inappropriate medications is essential as those with HIV age to avoid drug fatigue, serious interactions, hospitalization and early mortality. Opioid prescription management will be critical to mitigating the effect of this epidemic on ageing with HIV.</td>
</tr>
<tr>
<td><strong>Use tools to know when to intervene.</strong> Various calculators and indexes exist which can be used in HIV care. The VACS Index, for example, can facilitate monitoring the overall health of HIV infected individuals, help inform intervals of follow up, and alert provider and patient to changes in the patient’s physiologic frailty that may require closer monitoring, a change in management, or a move to an assisted living facility or hospice.</td>
</tr>
<tr>
<td><strong>Preparing care facilities for HIV-infected adults.</strong> We must ensure an HIV-knowledgeable workforce in assisted living facilities and hospices that serve the general population.</td>
</tr>
<tr>
<td><strong>End of life planning.</strong> Many ageing HIV infected individuals will require end of life support, with facilities and providers trained in the care of those with HIV-infection.</td>
</tr>
<tr>
<td><strong>Testing and adaptation of models of care.</strong> Whether HIV clinics continue to be the medical home for adults ageing with HIV, or primary care teams step in to help manage the increasing complexity of care, patient-centred care, focused on the patient’s personal goals for quality of life, should be adapted and override an exclusive focus on survival.</td>
</tr>
</tbody>
</table>
specifically for HIV-infected adults and is based on an accumulation of physiologic deficits. The VACS Index incorporates age and biomarkers specific for HIV and for liver, renal and bone marrow disease. Further, the VACS Index has been associated with physiologic frailty [82–84], cognitive performance [75], functional status [85], hospitalizations [86] and inflammatory markers [87,88], and reproducibly estimates the probability of all-cause mortality among HIV-infected individuals [89,90]. The VACS Index is also a good predictor of cardiovascular mortality and can improve clinical assessment of mortality risk even when all the component measures are available [91,92]. It is increasingly used in HIV clinical settings to guide decision-making as to the frequency of medical follow-up, clinical risk assessment and end of life planning.

Falls and fractures
Falls and fractures are important health outcomes that have been linked to multimorbidity, polypharmacy, functional impairment, CVD, diabetes, HCV coinfection and tenofovir disoproxil fumarate use [82,93–96]. Markers of HIV-infection (CD4 count, viral load), however, have not been associated with falls [71,73]. Interestingly, the perception of balance has been associated with falls in HIV-infected men [97]. Alcohol and other substance use likely contribute substantially to risk of falls and fractures. Proton pump inhibitors, a commonly used medication to reduce gastric acid production, have negative effects on bone health (and have also been linked to an increased risk of chronic kidney disease) [98]. A single infusion of zoledronic acid, a long-acting bisphosphonate for the treatment of osteoporosis, at ART initiation was shown to prevent ART-induced bone loss [99]. However, the long-term effects of bisphosphonates, the first-line therapy for low bone mineral density, as well as the impact of calcium and vitamin D supplementation to prevent bone disease, are unknown in HIV-infected adults (Tables 1–3).

### Table 2. Research recommendations

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are the conditions that drive morbidity and mortality for those aging with HIV?</td>
<td>What are the conditions that drive morbidity and mortality for those aging with HIV?</td>
</tr>
<tr>
<td>How can we effectively adapt and implement interventions that have worked for these conditions outside of HIV?</td>
<td>How can we effectively adapt and implement interventions that have worked for these conditions outside of HIV?</td>
</tr>
<tr>
<td>What systems of care are best suited to this task?</td>
<td>What systems of care are best suited to this task?</td>
</tr>
<tr>
<td>Are underlying mechanisms, or the balance of contributing mechanisms, for these conditions different for those aging with HIV than for those aging without HIV?</td>
<td>Are underlying mechanisms, or the balance of contributing mechanisms, for these conditions different for those aging with HIV than for those aging without HIV?</td>
</tr>
<tr>
<td>Do differences in mechanism or the balance of contributing mechanisms justify a different clinical approach?</td>
<td>Do differences in mechanism or the balance of contributing mechanisms justify a different clinical approach?</td>
</tr>
<tr>
<td>How does prolonged immune dysfunction interact with multiple chronic viral infections to lead to increased risk of virally-associated diseases?</td>
<td>How does prolonged immune dysfunction interact with multiple chronic viral infections to lead to increased risk of virally-associated diseases?</td>
</tr>
<tr>
<td>Will HIV infected individuals successfully treated for HCV infection still experience higher rates of cirrhosis and hepatocellular cancer?</td>
<td>Will HIV infected individuals successfully treated for HCV infection still experience higher rates of cirrhosis and hepatocellular cancer?</td>
</tr>
<tr>
<td>How can we more effectively treat HBV to avoid hepatocellular cancer?</td>
<td>How can we more effectively treat HBV to avoid hepatocellular cancer?</td>
</tr>
<tr>
<td>How do we characterize the phenotype[s] of aging with HIV so that we can provide the most appropriate packages of care services [monitoring, screening and treatment]? Modelling will provide important tools to develop tailored and evidence-based service integration and policy changes.</td>
<td>How do we characterize the phenotype[s] of aging with HIV so that we can provide the most appropriate packages of care services [monitoring, screening and treatment]? Modelling will provide important tools to develop tailored and evidence-based service integration and policy changes.</td>
</tr>
</tbody>
</table>

### Table 3. Online resources

The following are resources for additional information relevant to aging well with HIV and caring for those aging with HIV.

- The Veteran Aging Cohort Study Index (VACS Index). http://medicine.yale.edu/intmed/vacs/welcome/vacsindexinfo.aspx
- The Graying of AIDS project collates stories and accounts of survivors or adults who contracted HIV at older age, and provides resources on aging with HIV. http://www.grayingofaids.org/
- JUSTRI is a training and resource initiative with a guide to ageing well with HIV. http://justri.org/about-us/about-justri/

HBV, hepatitis B virus; HCV, hepatitis C virus.
CONCLUSION
As disease patterns become more complex among those ageing with HIV, HIV care will need to carefully consider how to appropriately prioritize prevention, screening and treatment (see Tables 1–3) and clinical research will need to embrace the complexity of ageing with HIV (see Tables 1–3) to maintain a high quality of life while continuing to extend survival.

Acknowledgements
The authors would like to thank Drs Perry Wilson, Kristina Crothers and Leslie Park for critical reading and suggestions on this manuscript.

Financial support and sponsorship
A.C.J.’s research is funded through the National Institutes of Health in the United States including National Institute of Alcohol Abuse and Alcoholism (U01 AA020790; U24 AA020794; U24 AA022001) and National Heart, Lung, and Blood Institute (R01 HL125032-01). K.N.A. is funded by the National Institute of Allergy and Infectious Diseases (K01 AI093197). M.S.’s research is funded by the Stichting HIV Monitoring Foundation, The Netherlands.

Conflicts of interest
A.C.J. has no conflicts of interest. P.R. through his institution has received independent scientific grant support from Gilead Sciences, Inc., Janssen Pharmaceuticals Inc, Merck & Co., Bristol-Myers Squibb and ViV Healthcare; he has served on scientific advisory board for Gilead Sciences, Inc.; he serves on data safety monitoring committee for Janssen Pharmaceuticals Inc; chaired a scientific symposium by ViV Healthcare, for which his institution has received remuneration. K.N.A. has served on scientific advisory boards for Gilead Sciences, Inc. M.S. received consultancy fees from Gilead Sciences to present at the Advisory Board and HIV team meeting, and is receiving through his institution scientific grant support from Gilead Sciences.

REFERENCES AND RECOMMENDED READING
Papers of particular interest, published within the annual period of review, have been highlighted as:

* of special interest
** of outstanding interest


This Danish study shows that although life expectancy amongst HIV-infected individuals over 50 years old has increased by more than 10 years from 1998–1999 to 2006–2014, it remains lower than the general population, even in those well treated and without comorbidity.

14. This multicentre cohort study of HIV-infected individuals in Europe, USA and Australia found that short-term BMI gain following ART initiation may increase longer-term CVD risk amongst people with normal pre-ART BMI and diabetes irrespective of pre-ART BMI.
21. Analysis of data from the multicentre ART Cohort Collaboration (ART-CC) of European and North American HIV-positive individuals found that successfully treated HIV-infected individuals may lose more life-years through smoking than HIV, and this excess mortality may increase with age.
23. This analysis of the large US-based VACS found that ongoing alcohol use is common among HIV-infected individuals and HIV-infected individuals experience greater mortality and physiologic injury with lower levels of alcohol consumption compared with uninfected controls; this work suggests that drinking limits for those with HIV infection should be no more than one drink per day (half the current recommended limit for men in the general population).

This study of HIV-infected adults over 45 years of age and uninfected controls in The Netherlands found that peripheral arterial, cardiovascular and impaired renal function were significantly more prevalent amongst HIV-positive individuals compared with uninfected controls, with risk factors including cardiovascular risk factors, HIV infection and longer duration of immunodeficiency.


This study of HIV-infected, 97% of which are male, and demographically matched controls from the US-based VACS found that while HIV-infected adults had a higher risk of age-associated noncommunicable events they occurred at similar ages than those without HIV.


This multicentre cohort study of HIV-infected individuals in Europe, USA and Australia found that reductions in AIDS-related deaths over time may be linked to improvements in CD4 count, while the reduction in liver disease and CVD deaths over time could be explained by non-HIV-specific preventive interventions. The leading cause of non-AIDS mortality is non-AIDS cancers.


This study showed a three-fold increase in the prevalence of current depression in HIV-infected adults receiving care compared with the general population in the USA.


70. Weisberg DF, Gordon KS, Barry DT, et al. Long-term prescription of opioids and/or benzodiazepines and mortality among HIV-infected and uninfected patients. J Acquir Immune Defic Syndr 2015; 69:223–233. This important study reported increased risk for mortality among those taking prescriptions opioids and benzodiazepines beyond that from polypharmacy alone, with excess risk among HIV-infected compared with uninfected individuals.

71. Schrack JA, Althoff KN, Jacobson LP, et al. Accelerated longitudinal gait speed decline in HIV-infected older men. J Acquir Immune Defic Syndr 2015; 70:370–376. This study in the US-based Multicenter AIDS Cohort Study (MACS) showed that HIV-infected men had a greater decrease in gait speed (an important measure of physical function) as compared with similar uninfected men.


